Expand description
Game Player
This crate provides the foundational traits and structures needed to implement a player for two-person perfect and hidden information games.
§Minimax Search
The crate includes a minimax search implementation with alpha-beta pruning and a transposition table to optimize performance.
§Key Integration Points
- Implement
Statetrait: Provides game state management and move application with associated Action type - Implement
StaticEvaluatortrait: Evaluates how good a position is for each player - Implement
ResponseGeneratortrait: Generates all possible moves from a position - Use
search: Combines everything to find the optimal move - Use
TranspositionTable: Caches evaluations for better performance
§Example
use std::cell::RefCell;
use std::rc::Rc;
use game_player::{PlayerId, State, StaticEvaluator, TranspositionTable};
use game_player::minimax::{ResponseGenerator, search};
// Simple game structures (chess-like for demonstration)
#[derive(Debug, Clone, PartialEq)]
struct GameMove { from: (u8, u8), to: (u8, u8) }
#[derive(Debug, Clone)]
struct GameState {
board: u64, // Simplified board representation
current_player: bool, // true = white/alice, false = black/bob
move_count: u32,
}
impl GameState {
fn new() -> Self {
Self { board: 0x1234567890abcdef, current_player: true, move_count: 0 }
}
fn is_game_over(&self) -> bool { self.move_count > 50 }
fn get_possible_moves(&self) -> Vec<GameMove> {
// Simplified: generate a few dummy moves
vec![
GameMove { from: (0, 0), to: (1, 1) },
GameMove { from: (0, 1), to: (1, 0) },
GameMove { from: (1, 0), to: (2, 0) },
]
}
}
// 1. Implement the State trait for your game
impl State for GameState {
type Action = GameMove;
fn fingerprint(&self) -> u64 {
// Create unique hash for transposition table
self.board ^ (self.current_player as u64) << 63 ^ self.move_count as u64
}
fn whose_turn(&self) -> u8 {
if self.current_player { PlayerId::ALICE as u8 } else { PlayerId::BOB as u8 }
}
fn is_terminal(&self) -> bool {
self.is_game_over()
}
fn apply(&self, game_move: &Self::Action) -> Self {
// Apply move and return new state
Self {
board: self.board.wrapping_add(1), // Simplified board update
current_player: !self.current_player,
move_count: self.move_count + 1,
}
}
}
// 2. Implement static evaluation for your game
struct GameEvaluator;
impl StaticEvaluator<GameState> for GameEvaluator {
fn evaluate(&self, state: &GameState) -> f32 {
if state.is_game_over() {
return 0.0; // Draw
}
// Simple evaluation: favor the player with more "material" (simplified)
(state.board.count_ones() as f32 - 16.0) * if state.current_player { 1.0 } else { -1.0 }
}
fn alice_wins_value(&self) -> f32 { 1000.0 }
fn bob_wins_value(&self) -> f32 { -1000.0 }
}
// 3. Implement move generation for your game
struct GameMoveGenerator;
impl ResponseGenerator for GameMoveGenerator {
type State = GameState;
fn generate(&self, state: &Rc<Self::State>, _depth: i32) -> Vec<Box<Self::State>> {
state.get_possible_moves()
.into_iter()
.map(|game_move| Box::new(state.apply(&game_move)))
.collect()
}
}
// 4. Use the minimax search to find the best move
fn find_best_move() -> Option<GameState> {
// Set up the game components
let initial_state = Rc::new(GameState::new());
let evaluator = GameEvaluator;
let move_generator = GameMoveGenerator;
let transposition_table = Rc::new(RefCell::new(TranspositionTable::new(10000, 100)));
// Perform minimax search to find best move
search(&transposition_table, &evaluator, &move_generator, &initial_state, 6)
.map(|best_state| (*best_state).clone())
}
// Usage: Create an AI that can play your game
let best_move = find_best_move();
match best_move {
Some(new_state) => println!("AI found best move, new state: {:?}", new_state),
None => println!("No moves available"),
}Re-exports§
pub use state::PlayerId;pub use state::State;pub use static_evaluator::StaticEvaluator;pub use transposition_table::TranspositionTable;
Modules§
- mcts
- Monte Carlo Tree Search (MCTS) module
- minimax
- Minimax Game Tree Search Implementation Module
- state
- Game State Module
- static_
evaluator - Static Evaluation Function Module
- transposition_
table - Transposition Table Module